199 research outputs found

    Now or never: negotiating efficiently with unknown counterparts

    Get PDF
    We define a new protocol rule, Now or Never (NoN), for bilateral negotiation processes which allows self-motivated competitive agents to efficiently carry out multi-variable negotiations with remote untrusted parties, where privacy is a major concern and agents know nothing about their opponent. By building on the geometric concepts of convexity and convex hull, NoN ensures a continuous progress of the negotiation, thus neutralising malicious or inefficient opponents. In par- ticular, NoN allows an agent to derive in a finite number of steps, and independently of the behaviour of the opponent, that there is no hope to find an agreement. To be able to make such an inference, the interested agent may rely on herself only, still keeping the highest freedom in the choice of her strategy. We also propose an actual NoN-compliant strategy for an automated agent and evaluate the computational feasibility of the overall approach on instances of practical size

    Experimental evaluation of algorithms forsolving problems with combinatorial explosion

    Get PDF
    Solving problems with combinatorial explosionplays an important role in decision-making, sincefeasible or optimal decisions often depend on anon-trivial combination of various factors. Gener-ally, an effective strategy for solving such problemsis merging different viewpoints adopted in differ-ent communities that try to solve similar prob-lems; such that algorithms developed in one re-search area are applicable to other problems, orcan be hybridised with techniques in other ar-eas. This is one of the aims of the RCRA (Ra-gionamento Automatico e Rappresentazione dellaConoscenza) group,1the interest group of the Ital-ian Association for Artificial Intelligence (AI*IA)on knowledge representation and automated rea-soning, which organises its annual meetings since1994

    Parallelization of cycle-based logic simulation

    Get PDF
    Verification of digital circuits by Cycle-based simulation can be performed in parallel. The parallel implementation requires two phases: the compilation phase, that sets up the data needed for the execution of the simulation, and the simulation phase, that consists in executing the parallel simulation of the considered circuit for a certain number of cycles. During the early phase of design, compilation phase has to be repeated each time a bug is found. Thus, if the time of the compilation phase is too high, the advantages stemming from the parallel approach may be lost. In this work we propose an effective version of the compilation phase and compute the corresponding execution time. We also analyze the percentage of execution time required by the different steps of the compilation phase for a set of literature benchmarks. Further, we implemented the simulation phase exploiting the GPU architecture, and we computed the execution times for a set of benchmarks obtaining values comparable with literature ones. Finally, we implemented the sequential version of the Cycle-based simulation in such a way that the execution time is optimized. We used the sequential values to compute the speedup of the parallel version for the considered set of benchmarks

    Generalizing Consistency and other Constraint Properties to Quantified Constraints

    Full text link
    Quantified constraints and Quantified Boolean Formulae are typically much more difficult to reason with than classical constraints, because quantifier alternation makes the usual notion of solution inappropriate. As a consequence, basic properties of Constraint Satisfaction Problems (CSP), such as consistency or substitutability, are not completely understood in the quantified case. These properties are important because they are the basis of most of the reasoning methods used to solve classical (existentially quantified) constraints, and one would like to benefit from similar reasoning methods in the resolution of quantified constraints. In this paper, we show that most of the properties that are used by solvers for CSP can be generalized to quantified CSP. This requires a re-thinking of a number of basic concepts; in particular, we propose a notion of outcome that generalizes the classical notion of solution and on which all definitions are based. We propose a systematic study of the relations which hold between these properties, as well as complexity results regarding the decision of these properties. Finally, and since these problems are typically intractable, we generalize the approach used in CSP and propose weaker, easier to check notions based on locality, which allow to detect these properties incompletely but in polynomial time

    Residential demand management using individualised demand aware price policies

    Get PDF
    This paper presents a novel approach to Demand Side Management (DSM), using an “individualised” price policy, where each end user receives a separate electricity pricing scheme designed to incentivise demand management in order to optimally manage flexible demands. These pricing schemes have the objective of reducing the peaks in overall system demand in such a way that the average electricity price each individual user receives is non-discriminatory. It is shown in the paper that this approach has a number of advantages and benefits compared to traditional DSM approaches. The “demand aware price policy” approach outlined in this paper exploits the knowledge, or demand-awareness, obtained from advanced metering infrastructure. The presented analysis includes a detailed case study of an existing European distribution network where DSM trial data was available from the residential end-users

    Anytime system level verification via parallel random exhaustive hardware in the loop simulation

    Get PDF
    System level verification of cyber-physical systems has the goal of verifying that the whole (i.e., software + hardware) system meets the given specifications. Model checkers for hybrid systems cannot handle system level verification of actual systems. Thus, Hardware In the Loop Simulation (HILS) is currently the main workhorse for system level verification. By using model checking driven exhaustive HILS, System Level Formal Verification (SLFV) can be effectively carried out for actual systems. We present a parallel random exhaustive HILS based model checker for hybrid systems that, by simulating all operational scenarios exactly once in a uniform random order, is able to provide, at any time during the verification process, an upper bound to the probability that the System Under Verification exhibits an error in a yet-to-be-simulated scenario (Omission Probability). We show effectiveness of the proposed approach by presenting experimental results on SLFV of the Inverted Pendulum on a Cart and the Fuel Control System examples in the Simulink distribution. To the best of our knowledge, no previously published model checker can exhaustively verify hybrid systems of such a size and provide at any time an upper bound to the Omission Probability

    Simulator Semantics for System Level Formal Verification

    Get PDF
    Many simulation based Bounded Model Checking approaches to System Level Formal Verification (SLFV) have been devised. Typically such approaches exploit the capability of simulators to save computation time by saving and restoring the state of the system under simulation. However, even though such approaches aim to (bounded) formal verification, as a matter of fact, the simulator behaviour is not formally modelled and the proof of correctness of the proposed approaches basically relies on the intuitive notion of simulator behaviour. This gap makes it hard to check if the optimisations introduced to speed up the simulation do not actually omit checking relevant behaviours of the system under verification. The aim of this paper is to fill the above gap by presenting a formal semantics for simulators.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    Combining Relational Algebra, SQL, Constraint Modelling, and Local Search

    Full text link
    The goal of this paper is to provide a strong integration between constraint modelling and relational DBMSs. To this end we propose extensions of standard query languages such as relational algebra and SQL, by adding constraint modelling capabilities to them. In particular, we propose non-deterministic extensions of both languages, which are specially suited for combinatorial problems. Non-determinism is introduced by means of a guessing operator, which declares a set of relations to have an arbitrary extension. This new operator results in languages with higher expressive power, able to express all problems in the complexity class NP. Some syntactical restrictions which make data complexity polynomial are shown. The effectiveness of both extensions is demonstrated by means of several examples. The current implementation, written in Java using local search techniques, is described. To appear in Theory and Practice of Logic Programming (TPLP)Comment: 30 pages, 5 figure

    On minimising the maximum expected verification time

    Get PDF
    Cyber Physical Systems (CPSs) consist of hardware and software components. To verify that the whole (i.e., software + hardware) system meets the given specifications, exhaustive simulation-based approaches (Hardware In the Loop Simulation, HILS) can be effectively used by first generating all relevant simulation scenarios (i.e., sequences of disturbances) and then actually simulating all of them (verification phase). When considering the whole verification activity, we see that the above mentioned verification phase is repeated until no error is found. Accordingly, in order to minimise the time taken by the whole verification activity, in each verification phase we should, ideally, start by simulating scenarios witnessing errors (counterexamples). Of course, to know beforehand the set of such scenarios is not feasible. In this paper we show how to select scenarios so as to minimise the Worst Case Expected Verification Tim

    Optimising Highly-Parallel Simulation-Based Verification of Cyber-Physical Systems

    Full text link
    Cyber-Physical Systems (CPSs), comprising both software and physical components, arise in many industry-relevant domains and are often mission- or safety-critical. System-Level Verification (SLV) of CPSs aims at certifying that given (e.g., safety or liveness) specifications are met, or at estimating the value of some KPIs, when the system runs in its operational environment, i.e., in presence of inputs (from users or other systems) and/or of additional, uncontrolled disturbances. To enable SLV of complex systems from the early design phases, the currently most adopted approach envisions the simulation of a system model under the (time bounded) operational scenarios of interest. Simulation-based SLV can be computationally prohibitive (years of sequential simulation), since model simulation is computationally intensive and the set of scenarios of interest can huge. We present a technique that, given a collection of scenarios of interest (extracted from mass-storage databases or from symbolic structures, e.g., constraint-based scenario generators), computes parallel shortest simulation campaigns, which drive a possibly large number of system model simulators running in parallel in a HPC infrastructure through all (and only) those scenarios in the user-defined (possibly random) order, by wisely avoiding multiple simulations of repeated trajectories, thus minimising the overall completion time, compatibly with the available simulator memory capacity. Our experiments on Modelica/FMU and Simulink case study models with up to ~200 million scenarios show that our optimisation yields speedups as high as 8x. This, together with the enabled massive parallelisation, makes practically viable (a few weeks in a HPC infrastructure) verification tasks (both statistical and exhaustive, with respect to the given set of scenarios) which would otherwise take inconceivably long time
    • …
    corecore